Overview

Purpose: The aim of the study was to evaluate stationary interaction mechanisms that are used in HILIC, assessing which ones are dominant in urethane and silicas. The latter was of interest to us because the literature is divided on whether stationary interaction mechanisms are crucial. In this study, stationary interactions were assessed between analytes and stationary phases.

Results: The stationary interaction mechanism that correlated best with retention was hydrogen bonding (OH). The correlation of this mechanism with retention was 0.51 (Hypersil GOLD Silica) and 0.50 (Hypersil GOLD HILIC). The correlation of other mechanisms such as hydrophobic interactions (CH2) and ion exchange (CX) was 0.07 and 0.09, respectively.

Conclusions: The study showed that stationary interaction mechanisms are crucial in HILIC, particularly when it comes to the correlation between retention and stationary interaction mechanisms. The study also showed that the correlation between retention and stationary interaction mechanisms was stronger than the correlation between retention and other mechanisms such as hydrophobic interactions and ion exchange. This study also showed that the correlation between retention and stationary interaction mechanisms was stronger than the correlation between retention and other mechanisms such as hydrophobic interactions and ion exchange.

Results: The stationary interaction mechanism that correlated best with retention was hydrogen bonding (OH). The correlation of this mechanism with retention was 0.51 (Hypersil GOLD Silica) and 0.50 (Hypersil GOLD HILIC). The correlation of other mechanisms such as hydrophobic interactions (CH2) and ion exchange (CX) was 0.07 and 0.09, respectively.

Conclusions: The study showed that stationary interaction mechanisms are crucial in HILIC, particularly when it comes to the correlation between retention and stationary interaction mechanisms. The study also showed that the correlation between retention and stationary interaction mechanisms was stronger than the correlation between retention and other mechanisms such as hydrophobic interactions and ion exchange. This study also showed that the correlation between retention and stationary interaction mechanisms was stronger than the correlation between retention and other mechanisms such as hydrophobic interactions and ion exchange.

Results: The stationary interaction mechanism that correlated best with retention was hydrogen bonding (OH). The correlation of this mechanism with retention was 0.51 (Hypersil GOLD Silica) and 0.50 (Hypersil GOLD HILIC). The correlation of other mechanisms such as hydrophobic interactions (CH2) and ion exchange (CX) was 0.07 and 0.09, respectively.

Conclusions: The study showed that stationary interaction mechanisms are crucial in HILIC, particularly when it comes to the correlation between retention and stationary interaction mechanisms. The study also showed that the correlation between retention and stationary interaction mechanisms was stronger than the correlation between retention and other mechanisms such as hydrophobic interactions and ion exchange. This study also showed that the correlation between retention and stationary interaction mechanisms was stronger than the correlation between retention and other mechanisms such as hydrophobic interactions and ion exchange.

Results: The stationary interaction mechanism that correlated best with retention was hydrogen bonding (OH). The correlation of this mechanism with retention was 0.51 (Hypersil GOLD Silica) and 0.50 (Hypersil GOLD HILIC). The correlation of other mechanisms such as hydrophobic interactions (CH2) and ion exchange (CX) was 0.07 and 0.09, respectively.

Conclusions: The study showed that stationary interaction mechanisms are crucial in HILIC, particularly when it comes to the correlation between retention and stationary interaction mechanisms. The study also showed that the correlation between retention and stationary interaction mechanisms was stronger than the correlation between retention and other mechanisms such as hydrophobic interactions and ion exchange. This study also showed that the correlation between retention and stationary interaction mechanisms was stronger than the correlation between retention and other mechanisms such as hydrophobic interactions and ion exchange.