HPLC Separation of All-Trans-β-Carotene and Its Iodine-Induced Isomers Using a C30 Column

Chen Jing,1 Xu Qun,1 and Jeffrey Rohrer2
1Thermo Fisher Scientific Inc., Shanghai, People’s Republic of China
2Thermo Fisher Scientific Inc., Sunnyvale, CA, USA

Key Words
Provitamin, Carotenoid, Antioxidant, Natural Product, Mass Spectrometry (MS), APCI

Introduction
Carotenoids are a group of natural products that are common fat-soluble pigments in foods. Many therapeutic functions have been ascribed to these compounds, though the recognized role of β-carotene is as the main dietary source of vitamin A. Recently, protective effects of carotenoids against serious disorders such as cancer, heart disease and degenerative eye disease have been recognized.1 β-Carotene is generally regarded as the most commercially important and widely utilized carotenoid. It is used as a food coloring agent, an antioxidant, and an important and safe provitamin A source. Most β-carotene is naturally present in the trans form; however, some amounts of the cis form of β-carotene are also present in foods.2 Figure 1 shows the structures of all-trans-β-carotene and its four important cis isomers, 15 or 15’, 13 or 13’, 11 or 11’ and 9 or 9’. Using a typical reversed-phase column, such as a C18, it is difficult to separate trans-β-carotene and its cis isomers. Therefore a C30 stationary phase was applied to this separation challenge with the thought that the longer C30 alkyl chain of the stationary phase would be ideal for separating hydrophobic structurally related isomers.3

The work shown here describes an efficient and convenient way to acquire the isomers of β-carotene by exposing it to iodine in sunshine.4 β-Carotene and its iodine-induced isomers were separated on a Thermo Scientific Acclaim C30 column, which is designed to provide high shape selectivity for separation of hydrophobic structurally related isomers and unique selectivity complementary to other reversed-phase columns (e.g., C18).5 Seven compounds were identified as isomers of β-carotene, and the structures of four isomers were tentatively identified based on their chromatographic behaviors, spectral characters, and mass spectra obtained by a Thermo Scientific Dionex DAD-3000RS Rapid Separation Diode Array Detector and a Thermo Scientific MSQ Plus Mass Spectrometer.

Figure 1. Structures of β-carotene and its four major cis isomers.

Goal
To develop a better HPLC separation of β-carotene and its iodine-induced isomers than possible on a C18 reversed-phase column.

Equipment
• Thermo Scientific Dionex UltiMate 3000 Rapid Separation Liquid Chromatography (RSLC) system, including:
 – SRD-3400 Integrated Solvent and Degasser Rack
 – LPG-3400RS Quaternary RS Pump
 – WPS-3000TRS Well Plate Sampler, Thermostatted
 – TCC-3000RS Thermostatted Column Compartment
 – DAD-3000RS Diode Array Detector (volume: 13 µL; length: 10 mm; pressure limit: 120 bar)
• MSQ Plus™ Mass Spectrometer with APCI source
• Thermo Scientific Dionex Chromleon Chromatography Data System (CDS) software, Version 6.80 SR9 or higher
Results and Discussion
Separation of the Iodine-Induced Trans-β-Carotene Solution
Selection of Mobile Phase
Nonaqueous reversed-phase (NARP) is usually used for determining fat-soluble compounds by HPLC so that the compounds are soluble throughout the analysis. A typical NARP mobile phase consists of a polar solvent (usually acetonitrile), a solvent with lower polarity (e.g., dichloromethane) to act as a solubilizer and to control retention by adjusting the solvent strength, and an amount of a third solvent with hydrogen-bonding capacity (e.g., methanol) to optimize selectivity. Therefore, a mobile phase containing acetonitrile, methanol, and MTBE was used in this work to separate the fat-soluble β-carotene and its isomers.

Effect of Column Temperature
Preliminary experiments showed that column temperature significantly influenced the selectivity of C30 column for the separation of an iodine-induced all-trans-β-carotene solution. Therefore, the effect of column temperature was evaluated further. Figure 2 shows the effect of temperature between 10 °C and 50 °C. The retention time decreased as expected when increasing the column temperature; however, lower column temperature provided better resolution. For example, while peak 2 and 3 could not be separated between 20 °C and 40 ºC, a resolution (Rs) of 1.5 was achieved at 10 °C. There were three small peaks observed between peaks 1 and 2 at 20 ºC, though only two of them could be found below 20 ºC, and they coeluted with peaks 1, 2 and 3 when temperature was higher than 30 ºC. Given that 10 ºC provided the best resolution of the major peaks, it was used for all further studies.

Sample Preparation
Solutions for Iodine Induction of Isomers
Solution 1 (I2–hexane, 1 mg/mL): dissolve 10 mg of I2 in 10 mL of hexane in a brown-colored flask.

Solution 2 (β-carotene–hexane, 1 mg/mL): dissolve 20 mg of all-trans-β-carotene standard in 20 mL of hexane in a brown-colored flask.

Isomer Induction Procedure
Add 1 mL of Solution 1 and 20 mL of Solution 2 to a translucent flask. After shaking for 1 min, expose the sample to sunlight for 30 min, and then move the mixture to a brown colored flask. Preserve the sample in the dark.

Reagents and Standards
Deionized (DI) water, 18.2 MΩ·cm resistivity
Acetonitrile (CH3CN), HPLC grade (Cat.# AC610010040), Fisher Chemical
Methanol (CH3OH), HPLC grade (Cat.# AC610090040), Fisher Chemical
n-Hexane, HPLC grade (Cat.# H3025K-4), Fisher Chemical
Methyl tert-butyl ether (MTBE), HPLC grade (Cat.# BP2605-100), Fisher Chemical
All-trans-β-carotene, ≥ 97%, Fluka Iodine, ≥ 99.8%, Sigma-Aldrich

Chromatographic Conditions
Analytical Column: Acclaim™ C30, 5 µm, 4.6 × 150 mm (P/N 075719)
Column Temperature: 10 °C
Mobile Phase: MTBE/CH3CN/CH3OH In gradient (Table 1)
Flow Rate: 1.0 mL/min
Detection: Absorbance at 475 nm
Injection Volume: 5 µL

MSQ-Plus Mass Detector Conditions
Ionization Interface: APCI
Operating Mode: Positive Scan
Scan Events: Selected Ion Monitoring (SIM) scan: 537 m/z for all-trans-β-carotene and its isomers
Probe Temperature: 400 °C
Corona: 30 µA
Cone Voltage: 60 V
Nebulizer Gas: Nitrogen at 60 psi

Table 1. Gradient conditions for the separation of all-trans-β-carotene and its iodine-induced isomers.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Mobile Phase A MTBE (% vol.)</th>
<th>Mobile Phase B CH3CN (% vol.)</th>
<th>Mobile Phase C CH3OH (% vol.)</th>
<th>Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
<td>25</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>50</td>
<td>15</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>25.0</td>
<td>50</td>
<td>15</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>25.5</td>
<td>0</td>
<td>25</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>30.0</td>
<td>0</td>
<td>25</td>
<td>75</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 2. Chromatograms of an iodine-induced all-trans-β-carotene solution on the Acclaim C30 column (5 µm, 4.6 × 150 mm) at different column temperatures.
Comparison of the Separation on C18 and C30 Columns

Although the extensively-used C18 column is a good choice for the separation of low-polarity compounds, e.g., fat-soluble vitamins, it failed to separate trans-β-carotene and its cis isomers. Figure 3 shows the chromatograms of an iodine-induced all-trans-β-carotene solution separated on C18 and C30 columns. Optimizing chromatographic conditions for the separation on the C18 column showed that there was no improvement compared to the conditions optimized for the C30 column. Under the optimized conditions for the C30 column, sixteen peaks were found on the C18 column (Figure 3A), while there were over twenty peaks observed on the C30 column (Figure 3B), demonstrating that the C30 stationary phase was better for separation of all-trans-β-carotene and its cis isomers.

Identification of the Iodine-Induced Isomers of All-Trans-β-Carotene

Table 2 lists ten peaks from the chromatogram (Figure 3 Panel B) of the iodine-induced all-trans-β-carotene solution. These peaks were presumed to be the cis isomers of all-trans-β-carotene based on their similar spectra, shown in Figure 4. When a cis isomerization of trans-β-carotene occurs at one double-bond, a small absorption peak appears with a maximum absorption wavelength (λ_max) between 330 nm and 345 nm. This peak is called a cis peak, and the double-bond on which the cis isomerization occurs is called a cis bond. Meanwhile, a slight hypsochromic shift for the λ_max of main peak the cis isomer can be observed, compared to the main peak of all-trans-β-carotene. The maximum absorption of cis peak (A_max cis peak) increased when the cis isomerization occurs close to the molecular center. Table 2 lists the detected λ_max of cis peaks and main peaks. An empirical value put forward by Tsukida et al., Q-ratio, can be used to identify the types of cis isomers. Its value is defined as:

\[Q\text{-ratio} = \frac{A_{\text{λ_{max} cis peak}}}{A_{\text{λ_{max} main peak}}} \]

Where A_{\text{λ_{max} cis peak}} and A_{\text{λ_{max} main peak}} represent the maximum absorption of cis peak and main peak, respectively. Table 2 lists the calculated Q-ratio values of the ten peaks.

Table 2. Identification data for cis isomers of all-trans-β-carotene.

<table>
<thead>
<tr>
<th>Peak Number</th>
<th>All-Trans-β-Carotene and Its Cis Isomers</th>
<th>Detected λ_{max} of Cis Peak (nm)</th>
<th>Detected λ_{max} of Main Peak (nm)</th>
<th>Q-Ratio Found</th>
<th>Q-Ratio Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Speculated as false positive cis</td>
<td>331.4</td>
<td>439.8</td>
<td>0.51</td>
<td>——</td>
</tr>
<tr>
<td>6</td>
<td>13 or 13’-cis-isomer</td>
<td>329.4</td>
<td>439.1</td>
<td>0.34</td>
<td>0.35</td>
</tr>
<tr>
<td>8</td>
<td>Cis not identified</td>
<td>326.6</td>
<td>445.1</td>
<td>0.04</td>
<td>——</td>
</tr>
<tr>
<td>9</td>
<td>Cis not identified</td>
<td>341.5</td>
<td>440.7</td>
<td>0.06</td>
<td>——</td>
</tr>
<tr>
<td>10</td>
<td>Cis not identified</td>
<td>343.0</td>
<td>437.7</td>
<td>0.09</td>
<td>——</td>
</tr>
<tr>
<td>11</td>
<td>Speculated as false positive cis</td>
<td>338.0</td>
<td>451.2</td>
<td>0.79</td>
<td>——</td>
</tr>
<tr>
<td>12</td>
<td>15 or 15’-cis-isomer</td>
<td>338.7</td>
<td>443.8</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>13</td>
<td>9,15-cis-isomer</td>
<td>336.2</td>
<td>438.7</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>15</td>
<td>All-trans-β-carotene</td>
<td>——</td>
<td>451.4</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>16</td>
<td>9 or 9’-cis-isomer</td>
<td>343.5</td>
<td>446.4</td>
<td>0.10</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Although the hypsochromic shift occurred, the structures of peaks 5, 8, and 9 could not be tentatively identified due to the lack of reported Q-ratio values for comparison. The Q-ratio value of peak 10 was similar to that of 9 or 9'-cis-isomer (peak 16). However, its detected λ_{max} main peak (437.7 nm) was significantly different from that of the peak indentified as 9 or 9'-cis-isomer (446.4 nm) and the reported value (447 nm). Therefore, its identity could not be assigned. The detected λ_{max} main peak of peak 11 (451.2 nm) was almost the same as that of all-trans-β-carotene (451.4 nm), as no hypsochromic shift was observed, and no reported Q-ratio value matched its Q-ratio value. Therefore, the structure of peak 11 could not be assigned.

Mass spectrometry detection using an APCI source with SIM scan (537 m/z, span 2) was used for further identification. Peaks 6, 8, 9, 10, 12, 13, 15 and 16 were found, confirming their previous identification using their UV spectra. However, since peaks 5 and 11 were not found, it could be speculated that their identifications based on their UV/vis absorbance spectra were false positives. They did not have Q values to indicate they were cis-β-carotenes even by UV detection.

Faster Separation of the Iodine-Induced Isomers of All-Trans-β-Carotene

Figure 5 shows a chromatogram of the iodine-induced all-trans-β-carotene solution using an Acclaim C30 column with a smaller particle size and a narrower diameter (3 µm, 3 × 150 mm). The separation was completed with similar resolution in 19 min, and with approximately 56% solvent savings.

Peak 15 could be positively identified as all-trans-β-carotene with the standard. Based on the spectral characteristics and reported Q-ratio values, peaks 6, 12, 13, and 16 were tentatively identified as cis isomers of all-trans-β-carotene. Peak 6 was identified as 13 or 13'-cis-β-carotene, peak 12 was identified as 15 or 15-cis-β-carotene, peak 13 was identified as 9, 15-cis-β-carotene, and peak 16 was identified as 9 or 9-cis-β-carotene. Hypsochromic shifts of more than 6 nm were detected from the main absorption maxima of these cis-β-carotenes, compared to that of all-trans-β-carotene.
Conclusion
This work demonstrates that the Acclaim C30 column provides an efficient and convenient way to separate β-carotene and its isomers: seven compounds were identified as isomers of β-carotene, and the structures of four isomers were tentatively identified based on their chromatographic behaviors, spectral characters, and mass spectra.

References